PHENIX Muon Tracker Electronics in Year-1

Ming X. Liu Los Alamos National Lab

- Phenix Experiment
- Muon Tracking System Design Specs
- Analog and Digital Design
- Results from RHIC Run-II

Physics - QGP?

$$J/\psi(c\overline{c}) \to \mu^{+}\mu^{-}$$
$$M_{J/\psi} = 3.1 GeV$$

PHENIX Experiment

Central Arms

- Tracking, EMCal, PID
- $|\eta| < 0.35$

Muon Arms

- Tracking+MuID
- $-1.2 < |\eta| < 2.4$
- $-\Delta \phi = 2\pi$

Muon Tracking Chamber

0.5 cm Cathode Strip Chamber

STRUCTURE OF A STATION

Cross Section of Station 1

Muon FEE Design Specs

Good J/Psi mass resolution

- Low Noise
 - 100 μm resolution
 1 cm cathode strip
 readout
 - input cap 10-150pF
- High Speed
 - sample new data on every beam crossing
 - 4 samples per pulse
 - hold 5 events
 - 25kHz LVL-1 [40uS]

Serial Control and Monitor

- FPGA,AMUADC,CPA
- Temp, Voltage, Current

Performance

- 11 bits dynamic range[0-2047]
- typical charge 80fC (0.4-800fC)
- gain: 3.5mV/fC
- noise requirement 1% or 0.8fC
- pulse shape
 - rise time 0.7uS
 - decay time 10uS
- optical link to outside world
- reasonable power-up defaults;
- calibration control

Muon FEE

Low noise high speed FEM

 $resolution: 100 \mu m = x \cdot 1cm \Rightarrow x = 1\%$

noise : $Q' = 80 fC \cdot 1\% = 0.8 fC$

Thermal noise:

$$\frac{1}{2} \frac{Q_{thermal}^{2}}{C_{\text{det}}} = \frac{1}{2} kT \Rightarrow Q_{thermal} = 0.65 fC$$

Cathodes Read-Out Card (CROC)

• Design Requirements

- 64 Channel Readout per CROC
- Less than 3125 electrons (RMS)
 noise for 10-150 pF of detector
 capacitance (including 24" cable) •
- Less than 1% crosstalk between any channels on the board
- gain: 3.5mV/fC
- Digital/Analog isolation

Main Components

- AMU-ADC
- CPA

Muon FEE - CROC

• CPA(Charge Pre-Amp)

- low noise (<3000 e's)
- 8-channel preamp/shaper
- 34-bit serial control
 - pedestals
 - pulse shape

• AMU-ADC

- 32 channels
- 64-cell AMU
- serial control
 - V_ref, I_ref
 - 9-12 bits ADC conversion

Noise Spec

- 200MHz clock

Controller Card (CNTL)

• Design Requirements

- Control AMU/ADC data collection, conversion and read-out
- Provide connection to 2 CROC boards
- Provide connection to the outside world
- Support the T&FC and DCM interface
- Provide data relay from remote controller board to DCM
- Support ARCnet connectivity to serial configuration bus

FPGA - the brain

- developed by Jack
- work in progress

CNTL Card

MUON TRACKER CNTL FPGA

Muon FEE

• FPGA - current code

- store every beam crossing
- 4-sample per pulse
- readout time 53uS
- hold 4 events

Muon Tracking FEE Overview

Supporting Muon Tracking Electronics

G/Clink cards

Calibration

System Diagram

Grounding Configuration

FEE Overview

Inside Magnet/no access

Limited Space

Power constrain

Many Channels

PHENIX South Muon Tracker

Interface to PHENIX DAQ

Data readout and DAQ system

Detector Commissioning

- Electronics
- HV
- Noise Reduction
- Timing in Detector

Good Timing

Low noise rms ~ 2 ADCs

chamber resolution ~100um

Muon Tracker Calibration System

MuTr Calibration System - M. Leitch, P. McGaughey

Calibration

9000

8000

ADC distribution

Chamber Alignment Monitoring

A good tracking resolution:

- low electronics noise
- stable gain
- geometry and alignment

Optical Alignment System

Cameras on station-3 chambers

Data QA: calib. & online monitor

- 4 Samples' relative timing
 - (1,6,7,8) beam-crossings
- DAQ Zero-Suppression (<5%)
 - (peak pedestal)>3*rms
- Stable Pedestals and Gains
 - daily calibration

Dimuon Mass

Red: unlike-sign pair

Blue: like-sign pair

count

$$J/\psi(c\overline{c}) \to \mu^{+}\mu^{-}$$
$$M_{J/\psi} = 3.1 GeV$$

Significant enhancement of unlike-sign pair in the J/ψ mass region

- Peak (3123 +- 56 MeV/c²) is consistent with J/ψ mass
- Mass width (230 +- 40 MeV/c²) is consistent with expectation -> further improvement is expected

Current Status and Issues

- Worked as expected in Run-2
 - no major problems
 - luminosity was low
- G/Clink loss and readout problem
 - very sensitive to external disturbance --> replaced all bad cables
 - "dead" FEMs, ~5% -> loss acceptance
 - can't re-lock on the fly ->DAQ hung
- For higher luminosity (Run-4, 5, ...)
 - conversion time 53 uS is too long [40]
 - need to hold 5 events
 - new FPGA work in progress

ACTIVE MUON TRACKER CHANNELS

Visualization of active regions of three tracking stations. Dead regions are due to problems with HV and front end modules during 2001-2 run. Majority of problems corrected for next run.

Summary and Outlook

First collision events were observed on 07/18/2001

- Successfully installed and commissioned muon detector in the PHENIX
- More work to improve FPGA code to handle:
 - 5 events buffer(4)
 - 40uS conversion (53)

Conversion Time and Baseline Shift - AMUADC

- Problem is eliminated by adding 4 uS delay between conversion and data transfer (add 12+uS).
- Possible remedial actions
 - tune delay to minimize
 - use only three samples
 - relax requirement for five events

Disabled HV & FEMs

- HV
 - Station-1,2,3
 - 1825V:1850:1850
 - 72/304=23.7% disabled
- FEMs (total 168)
 - Sta-1: 4/40
 - Sta-2: 2/64
 - Sta-3: 2/64

were disabled

(loss ~15% acceptance)

DIMUON CANDIDATE

2 muon candidates penetrate muon identifier panels